Cystic fibrosis (CF) is one of the most important genetic diseases requiring prevention programmes. Preimplantation genetic diagnosis (PGD) represents an alternative to prenatal diagnosis, and is especially appropriate for couples with an unsuccessful reproductive history. For clinical application, protocols must be optimized to minimize PCR failure, allelic drop-out (ADO) and contamination, while simultaneously detecting a wide spectrum of CF genotypes. We have developed a flexible multiplex PCR protocol allowing analysis of sequence variations in any combination amongst seven CFTR gene exons (4, 10, 11, 13 in two parts, 14b, 17b and 21) by nested PCR and denaturing gradient gel electrophoresis analysis, along with analysis of a fluorescently labelled intragenic microsatellite (IVS8CA). The experiments were carried out on 390 single lymphocytes from three CF patients, one heterozygote and one non-CF individual. PCR efficiency of the exons ranged from 90 to 100%, and ADO from 0 to 3.8%. IVS8CA was co-amplified with a PCR efficiency of 92.4 and 10.8% ADO. The present method overcomes the need for separate assays for each CFTR gene mutation. Additionally, it facilitates analysis of any informative linked polymorphic sequence variation (within the seven exons) along with analysis of a microsatellite, which is useful (when informative) for minimizing misdiagnosis and/or indirect diagnosis. This method proved robust and flexible for diagnosing diverse CF genotype combinations in single cells.