A method for the complete peptide mapping of the model integral membrane protein bacteri-orhodopsin is demonstrated. Utilizing more effective enzymatic digestion, procedures with capillary liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) and tandem mass spectrometry (MS/MS), all predicted tryptic digestion products were detected, as well as peptides from all previously reported post-translational modifications of bacteriorhodopsin. A significant contribution of chymotryptic-like digestion products was also observed. A characterization of the behavior of hydrophobic integral membrane peptides in a reversed-phase liquid chromatographic separation is also provided. The method reported here offers improved compatibility of the solubilizing reagents with both the chromatography and mass spectrometry, rendering it suitable for high-throughput proteomic applications.