Current efforts aimed at developing high-throughput proteomics focus on increasing the speed of protein identification. Although improvements in sample separation, enrichment, automated handling, mass spectrometric analysis, as well as data reduction and database interrogation strategies have done much to increase the quality, quantity and efficiency of data collection, significant bottlenecks still exist. Various separation techniques have been coupled with tandem mass spectrometric (MS/MS) approaches to allow a quicker analysis of complex mixtures of proteins, especially where a high number of unambiguous protein identifications are the exception, rather than the rule. MS/MS is required to provide structural / amino acid sequence information on a peptide and thus allow protein identity to be inferred from individual peptides. Currently these spectra need to be manually validated because: (a) the potential of false positive matches i.e., protein not in database, and (b) observed fragmentation trends may not be incorporated into current MS/MS search algorithms. This validation represents a significant bottleneck associated with high-throughput proteomic strategies. We have developed CHOMPER, a software program which reduces the time required to both visualize and confirm MS/MS search results and generate post-analysis reports and protein summary tables. CHOMPER extracts the identification information from SEQUEST MS/MS search result files, reproduces both the peptide and protein identification summaries, provides a more interactive visualization of the MS/MS spectra and facilitates the direct submission of manually validated identifications to a database.