Reduced-intensity or nonmyeloablative stem cell transplantation (NST) is designed to induce host-versus-graft tolerance by engraftment of donor stem cells. The rationale behind NST is to induce optimal graft-versus-leukemia (GVL) effects for elimination of all malignant cells by donor alloreactive immunocompetent cells as an alternative to standard high-dose myeloablative chemoradiotherapy. NST based on the use of fludarabine, low-dose busulfan, and anti-T-lymphocyte globulin (ATG) was employed in 24 patients aged 3 to 63 years with chronic myeloid leukemia (CML) in first chronic phase (CP). Graft-versus-host disease (GVHD) prophylaxis consisted of low-dose cyclosporine (CSP), in some cases with low-dose methotrexate. Early discontinuation of CSP was attempted in cases of mixed chimerism in an attempt to amplify GVL effects. All 24 patients showed rapid 3-lineage engraftment, mostly without complete aplasia; 6 patients did not require transfusion of any blood products. NST was associated with minimal procedure-related toxicity. The incidence of acute GVHD (grade I or higher) was 54%; however, this incidence increased following CSP withdrawal. After a follow-up of up to 70 months (median, 42 months), 21 of 24 patients remained alive and disease free. The GVL effects induced by donor immunocompetent lymphocytes eradicated all host hematopoietic cells, as evidenced by molecular testing. The Kaplan-Meier probability of survival and disease-free survival at 5 years is 85% +/- 8% (95% confidence interval, 70%-100%). NST may successfully replace myeloablative stem cell transplantation, providing a safer, well-tolerated therapeutic option for all patients with CML in first CP with a matched donor. However, this conclusion must be tested in a prospective randomized clinical trial.