Human and bovine hemoglobins (Hbs) exhibit several functional differences. They have a similar oxygen affinity in the presence of 2,3-diphosphoglycerate (2,3-DPG); however, bovine Hb has a greatly diminished 2,3-DPG effect, which itself is chloride dependent. The question is to determine whether these differences have a common structural origin, or whether they evolved in an independent fashion. The decreased 2,3-DPG effect can be partially reproduced by mutations at the effector binding sites, substituting the betaNA1 valine-NA2 histidine present in human Hb with a methionine. While changes of human Hb at these sites could provoke the bovine characteristic of the lower 2,3-DPG effect, the oxygen affinities of these mutated Hbs were not as low as that of the bovine Hb. Modifications responsible for tertiary structural modifications of helix A in human Hb might help shift the N-terminal methionine position, thereby locking helix A in place. We replaced the residues proline beta5(A2), arginine beta104(G6), and tyrosine beta130(H8) of human Hb by the residues present in bovine beta-globin, namely alanine, lysine, and phenylalanine, respectively. These mutations did not allow us to obtain a low oxygen affinity recombinant Hb (rHb). This indicates that other factors also influence oxygen binding and the effects are only partially coupled.