During the last century, several approaches have been used for the development of vaccines, going from the immunization with live-attenuated bacteria up to the formulation of the safer subunit vaccines. This conventional approach to vaccine development requires cultivation of the pathogen and its dissection using biochemical, immunological and microbiological methods. Although successful in several cases, this method is time-consuming and failed to provide a solution for many human pathogens. Now genomic approaches allow for the design of vaccines starting from the prediction of all antigens in silico, independently of their abundance and without the need to grow the microorganism in vitro. A new strategy, termed "Reverse Vaccinology", which has been successfully applied in the last few years, has revolutionized the approach to vaccine research. The Neisseria meningitidis serogroup B project, the first example of Reverse Vaccinology, as well as the application of this strategy to develop novel vaccines against other human pathogens are discussed.