In the last few years, the interaction between phosphatidylserine (PS), a phospholipid that becomes permanently exposed on the external cell surface in the early phases of apoptosis, and its specific receptor (PtdSerR) has emerged as a crucial event for the engulfing of apoptotic cells and for preventing the acquisition of pro-inflammatory functions by peripheral macrophages. Recently, we demonstrated that PtdSerR is expressed in microglial cultures purified from neonatal rat brain, and that PS-liposomes, used to mimic apoptotic cells, strongly reduce the lipopolysaccharide (LPS)-induced release of inflammatory mediators. Here, we show that in resting microglia, PS-liposomes induce cyclic AMP responding element binding protein (CREB) phosphorylation but do not activate nuclear factor-kappaB (NF-kappaB) and p38 mitogen-activated protein kinase (p38), in line with the non-inflammatory consequences of the recognition and removal of apoptotic cells by macrophages. In LPS-activated microglia, PS-liposomes did not affect NF-kappaB activation but inhibited the phosphorylation of p38 and delayed that of CREB. To our knowledge, this is the first biochemical evidence of the molecular signaling evoked by PS/PtdSerR interaction possibly related to repression of pro-inflammatory activities in microglial cells.