Quantification of a novel h-shaped ultrasonic resonator for separation of biomaterials under terrestrial gravity and microgravity conditions

Biotechnol Bioeng. 2003 Apr 5;82(1):74-85. doi: 10.1002/bit.10546.

Abstract

A novel, h-shaped ultrasonic resonator was used to separate biological particulates. The effectiveness of the resonator was demonstrated using suspensions of the cyanobacterium, Spirulina platensis. The key advantages of this approach were improved acoustic field homogeneity, flow characteristics, and overall separation efficiency (sigma = 1 - ratio of concentration in cleared phase to input), monitored using a turbidity sensor. The novel separation concept was also effective under microgravity conditions; gravitational forces influenced overall efficiency. Separation of Spirulina at cleared flow rates of 14 to 58 L/day, as assessed by remote video recording, was evaluated under both microgravity (</=0.05 g) and terrestrial gravity conditions. The latter involved a comparison with 5- and 24-microm-diameter polystyrene microspheres. Influences of gravity on sigma were evaluated by varying the relative inclination angle (within a range of 120 degrees ) between the resonator and the gravitational vector. Cells of Spirulina behaved in a manner comparable to that of the 5-microm-diameter polystyrene microspheres, with a significant decrease in mean (+/-SE, n = 3) sigma from 0.97 +/- 0.03 and 0.91 +/- 0.02 at a flow rate of 14 L/day, to corresponding values of 0.53 +/- 0.05 and 0.57 +/- 0.03 (P < 0.05) at 58 L/day, respectively. During a typical microgravity period of ca. 22 s, achieved during the 29th ESA Parabolic Flight Campaign, sigma was unchanged at a flow rate of 14 L/day, compared with terrestrial gravity conditions; with increased flow rates, sigma was significantly reduced. Overall, these results demonstrate that, for optimum resonator performance under the relatively short microgravity period utilized in this study, flow rates of ca. 14 L/day were preferred. These data provide a baseline for exploiting noninvasive, compact, ultrasonic separation systems for manipulating biological particulates under microgravity conditions.

Publication types

  • Comparative Study
  • Evaluation Study
  • Research Support, Non-U.S. Gov't
  • Validation Study

MeSH terms

  • Cell Separation / instrumentation*
  • Cell Separation / methods
  • Cyanobacteria / cytology*
  • Cyanobacteria / isolation & purification*
  • Cyanobacteria / radiation effects
  • Equipment Design
  • Equipment Failure Analysis
  • Flow Cytometry / instrumentation*
  • Flow Cytometry / methods
  • Gravitation
  • Microspheres
  • Polystyrenes
  • Sensitivity and Specificity
  • Sonication / instrumentation*
  • Transducers
  • Weightlessness*

Substances

  • Polystyrenes