Background and purpose: Factor Xa (FXa) is a key coagulation protease and target for novel antithrombotic agents for prevention and treatment of diverse thromboembolic disorders. In the present study we describe the effect of a novel, potent, and selective FXa inhibitor, DPC602, on brain damage and neurobehavioral consequence in a rat thromboembolic model of stroke.
Methods: Thromboembolic stroke was induced in rats by placement of an autologous clot into the middle cerebral artery.
Results: Laser-Doppler monitoring of cerebral blood flow demonstrated that DPC602 (8 mg/kg, single IV/IP bolus pretreatment) markedly improved cerebral blood flow after thromboembolic stroke by 25% to 160% (n=6; P<0.001) at 1 to 6 hours. DPC602 demonstrated concentration- and time-dependent reductions in infarct size, with maximal effect (89% reduction; n=14; P<0.001) at the highest dose over controls. Neurological function was also significantly improved in DPC602-treated rats at days 1, 3, and 7 (n=13; P<0.01). DPC602 treatment did not cause cerebral hemorrhage, assessed by free hemoglobin in the ischemic brain tissues.
Conclusions: These data suggest that anticoagulation with a selective FXa inhibitor might ameliorate the extent of ischemic brain damage and neurological deficits after a thromboembolic event. Enhanced clot dissolution and early reperfusion may account for the cerebrovascular-protective effect of the drug.