The anaphase-promoting complex (APC) is a multisubunit E3 ubiquitin ligase that regulates the metaphase-anaphase transition and exit from mitosis in eukaryotic cells. Eleven subunits have been previously identified in APC from budding yeast. We have identified two additional subunits, Mnd2 and Swm1, by mass spectrometry. Both Mnd2 and Swm1 were found specifically associated with a highly purified preparation of APC from haploid yeast whole cell extract. Moreover, the APC co-purified with epitope-tagged Mnd2 and Swm1. Both proteins were present in APC preparations from haploid cells arrested in G(1), S, and M phases and from meiotic diploid cells, indicating that they are constitutive components of the complex throughout the yeast cell cycle. Mnd2 interacted strongly with Cdc23, Apc5, and Apc1 when coexpressed in an in vitro transcription/translation reaction. Swm1 also interacted with Cdc23 and Apc5 in this system. Previous studies described meiotic defects for mutations in MND2 and SWM1. Here, we show that mnd2delta and swm1delta haploid strains exhibit slow growth and accumulation of G(2)/M cells comparable with that seen in apc9delta or apc10Delta strains and consistent with an APC defect. Taken together, these results demonstrate that Swm1 and Mnd2 are functional components of the yeast APC.