We have demonstrated previously that antisera from mice immunised with DNA encoding the carboxy-terminal domain (JD9) of a potent haemorrhagic metalloproteinase, jararhagin, neutralised over 70% of the haemorrhagic activity of the whole Bothrops jararaca venom. Here, we demonstrate that the JD9-specific antibody possesses extensive immunological reactivity to venom components in snakes of distinct species and genera. The polyspecific immunological reactivity of the antibody showed a correlation with amino acid sequence identity and with predicted antigenic domains of JD9-analogues in venoms of snakes with closest phylogenetic links to B. jararaca. This study further promotes the potential of DNA immunisation to generate toxin-specific antibodies with polyspecific cover. An analysis of the reactivity of the JD9-specific antisera to B. atrox complex venoms that exhibited intraspecific variation in the venom proteome revealed, however, that the toxin-specific approach to antivenom development requires a more in-depth knowledge of the target molecules than is required for conventional antivenoms.