Tourette syndrome (TS) is a complex neuropsychiatric disorder characterized by both motor and vocal tics. The etiology of TS is poorly understood; however, evidence of genetic transmission arises from family and twin studies. A complex mode of inheritance has been suggested, likely involving contributions of several genes with different effect size. We describe here two unrelated families wherein balanced t(6;8) chromosomal translocations occur in individuals diagnosed with TS. In one of these families, the transmission of the translocation is associated with learning and behavioral difficulties; in the other family, one parent is unaffected and the other cannot be traced, thus transmission cannot be demonstrated and it is possible that the translocation may have occurred de novo. The breakpoint on chromosome 8 occurs within the q13 band in both families, suggesting that a gene or genes in this region might contribute to the TS phenotype. Existing linkage and cytogenetic data, suggesting involvement of chromosome 8 in TS families and individuals, further support this hypothesis. We have identified two YAC clones mapping distal and proximal to the chromosome 8 translocation site, as determined by fluorescent in situ hybridization (FISH). PCR amplification of genetic markers in this region, using isolated chromosomes from one of the patients, followed by BAC screening with the closest flanking genetic markers, has identified a 200-kb BAC, which, by FISH, we have demonstrated encompasses the chromosome 8 breakpoint in both families. The fact that the chromosomal breaks in the TS cases from both families occur within such a small region of chromosome 8 further supports the hypothesis that disruption of a gene or genes in this part of chromosome 8 contributes to the clinical phenotype.