Upon hepatocyte growth factor stimulation, its receptor c-Met is rapidly internalized via clathrin-coated vesicles and traffics through an early endosomal compartment. We show here that c-Met accumulates progressively in perinuclear compartments, which in part include the Golgi. The c-Met content in the Golgi is principally the newly synthesized precursor form and, to a lesser extent, the internalized, recycling c-Met. By following the trafficking of c-Met inside the cell using a semi-automatic procedure and using inhibition or activation of protein kinase C (PKC) and microtubule depolymerizing agents, we show that PKC positively controls the trans-cytosolic movement of c-Met along microtubules. In parallel to its traffic, internalized c-Met is progressively degraded by a proteasome-sensitive mechanism; the lysosomal pathway does not play a substantial role. Inhibition or promotion of c-Met traffic to the perinuclear compartment does not alter the kinetics of proteasome-dependent c-Met degradation. Thus susceptibility to proteasomal degradation is not a consequence of post-endocytic traffic. The data define a PKC-controlled traffic pathway for c-Met that operates independently of its degradative pathway.