NAMI-A is a ruthenium complex endowed with a selective effect on lung metastases of solid metastasizing tumors. The aim of this study is to provide evidence that NAMI-A's effect is based on the selective sensitivity of the metastasis cell, as compared with other tumor cells, and to show that lungs represent a privileged site for the antimetastatic effects. The transplantation of Lewis lung carcinoma cells, harvested from the primary tumor of mice treated with 35 mg/kg/day NAMI-A for six consecutive days, a dose active on metastases, shows no change in primary tumor take and growth but a significant reduction in formation of spontaneous lung metastases. Transmission electron microscopy examination of lungs and kidney shows NAMI-A to selectively bind collagen of the lung extracellular matrix and also type IV collagen of the basement membrane of kidney glomeruli. The half lifetime of NAMI-A elimination from the lungs is longer than for liver, kidney, and primary tumor. NAMI-A bound to collagen is active on tumor cells as shown in vitro by an invasion test, using a modified Boyden chamber and Matrigel, and it inhibits the matrix metallo-proteinases MMP-2 and MMP-9 at micromolar concentrations, as shown in vitro by a zimography test. These data show NAMI-A to significantly affect tumor cells with metastatic ability. Binding to collagen allows NAMI-A to exert its selective activity on metastatic cells during dissemination and particularly in the lungs. These data also stress the wide spectrum of daily doses and treatment schedules at which NAMI-A is active against metastases.