Functional magnetic resonance imaging (fMRI) is used widely to determine the spatial layout of brain activation associated with specific cognitive tasks at a spatial scale of millimeters. Recent methodological improvements have made it possible to determine the latency and temporal structure of the activation at a temporal scale of few hundreds of milliseconds. Despite the sluggishness of the hemodynamic response, fMRI can detect a cascade of neural activations - the signature of a sequence of cognitive processes. Decomposing the processing into stages is greatly aided by measuring intermediate responses. By combining event-related fMRI and behavioral measurement in experiment and analysis, trial-by-trial temporal links can be established between cognition and its neural substrate.