Maximizing quantitative accuracy of lung airway lumen and wall measures obtained from X-ray CT imaging

J Appl Physiol (1985). 2003 Sep;95(3):1063-75. doi: 10.1152/japplphysiol.00962.2002. Epub 2003 May 16.

Abstract

To objectively quantify airway geometry from three-dimensional computed tomographic (CT) images, an idealized (circular cross section) airway model is parameterized by airway luminal caliber, wall thickness, and tilt angle. Using a two-dimensional CT slice, an initial guess for the airway center, and the full-width-half-maximum principle, we form an estimate of inner and outer airway wall locations. We then fit ellipses to the inner and outer airway walls via a direct least squares fit and use the major and minor axes of the ellipses to estimate the tilt and in-plane rotation angles. Convolving the airway model, initialized with these estimates, with the three-dimensional scanner point-spread function forms the predicted image. The difference between predicted and actual images is minimized by refining the model parameter estimates via a multidimensional, unconstrained, nonlinear minimization routine. When optimization converges, airway model parameters estimate the airway inner and outer radii and tilt angle. Results using a Plexiglas phantom show that tilt angle is estimated to within +/-4 degrees and both inner and outer radii to within one-half pixel when a "standard" CT reconstruction kernel is used. By opening up the ability to measure airways that are not oriented perpendicular to the scanning plane, this method allows evaluation of a greater sampling of airways in a two-dimensional CT slice than previously possible. In addition, by combining the tilt-angle compensation with the deconvolution method, we provide significant improvement over the previous full-width-half-maximum method for assessing location of the luminal edge but not the outer edge of the airway wall.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Algorithms
  • Computer Graphics
  • Humans
  • Lung / anatomy & histology
  • Lung / diagnostic imaging*
  • Lung / physiology
  • Models, Anatomic
  • Models, Statistical
  • Nonlinear Dynamics
  • Tomography, X-Ray Computed