The authors are presenting a thorough introduction in Artificial Neural Networks (ANNs) and their contribution to modern Urologic Oncology. The article covers a description of Artificial Neural Network methodology and points out the differences of Artificial Intelligence to traditional statistic models in terms of serving patients and clinicians, in a different way than current statistical analysis. Since Artificial Intelligence is not yet fully understood by many practicing clinicians, the authors have reviewed a careful selection of articles in order to explore the clinical benefit of Artificial Intelligence applications in modern Urology questions and decision-making. The data are from real patients and reflect attempts to achieve more accurate diagnosis and prognosis, especially in prostate cancer that stands as a good example of difficult decision-making in everyday practice. Experience from current use of Artificial Intelligence is also being discussed, and the authors address future developments as well as potential problems such as medical record quality, precautions in using ANNs or resistance to system use, in an attempt to point out future demands and the need for common standards. The authors conclude that both methods should continue to be used in a complementary manner. ANNs still do not prove always better as to replace standard statistical analysis as the method of choice in interpreting medical data.