There have been significant efforts to build a probabilistic atlas of the brain and to use it for many common applications, such as segmentation and registration. Though the work related to brain atlases can be applied to nonbrain organs, less attention has been paid to actually building an atlas for organs other than the brain. Motivated by the automatic identification of normal organs for applications in radiation therapy treatment planning, we present a method to construct a probabilistic atlas of an abdomen consisting of four organs (i.e., liver, kidneys, and spinal cord). Using 32 noncontrast abdominal computed tomography (CT) scans, 31 were mapped onto one individual scan using thin plate spline as the warping transform and mutual information (MI) as the similarity measure. Except for an initial coarse placement of four control points by the operators, the MI-based registration was automatic. Additionally, the four organs in each of the 32 CT data sets were manually segmented. The manual segmentations were warped onto the "standard" patient space using the same transform computed from their gray scale CT data set and a probabilistic atlas was calculated. Then, the atlas was used to aid the segmentation of low-contrast organs in an additional 20 CT data sets not included in the atlas. By incorporating the atlas information into the Bayesian framework, segmentation results clearly showed improvements over a standard unsupervised segmentation method.