Macrophages have recently been shown to be critically involved in the pathogenesis of genetically determined demyelination in mice heterozygously deficient for P0 (P0(+-)). Since little is known about the origin of these cells, we created chimeric P0(+-) mice by transplanting bone marrow from green fluorescent protein (GFP)-transgenic mice into irradiated P0(+-) mice. When analyzing chimeric P0(+-) mice, we could determine two populations (GFP(+) and GFP(-)) of endoneurial macrophages that became phagocytic for myelin and increased in number. We found that both GFP(-) resident macrophages and GFP(+) macrophages proliferated in peripheral nerves of P0(+-) mice but not in nerves of chimeric or nonchimeric P0(++) mice. These findings demonstrate a so far poorly recognized role of resident endoneurial macrophages in demyelinating neuropathies. Surprisingly, we also found GFP(+) cells that unequivocally showed the morphological characteristics of fibroblasts. These blood-borne fibroblast-like cells express the common hematopoetic stem cell marker CD34 and might comprise another cell type of potential importance for immune regulation in hereditary demyelinating neuropathies.