The transmission disequilibrium test (TDT) has been utilized to test the linkage and association between a genetic trait locus and a marker. Spielman et al. (1993) introduced TDT to test linkage between a qualitative trait and a marker in the presence of association. In the presence of linkage, TDT can be applied to test for association for fine mapping (Martin et al., 1997; Spielman and Ewens, 1996). In recent years, extensive research has been carried out on the TDT between a quantitative trait and a marker locus (Allison, 1997; Fan et al., 2002; George et al., 1999; Rabinowitz, 1997; Xiong et al., 1998; Zhu and Elston, 2000, 2001). The original TDT for both qualitative and quantitative traits requires unrelated offspring of heterozygous parents for analysis, and much research has been carried out to extend it to fit for different settings. For nuclear families with multiple offspring, one approach is to treat each child independently for analysis. Obviously, this may not be a valid method since offspring of one family are related to each other. Another approach is to select one offspring randomly from each family for analysis. However, with this method much information may be lost. Martin et al. (1997, 2000) constructed useful statistical tests to analyse the data for qualitative traits. In this paper, we propose to use mixed models to analyse sample data of nuclear families with multiple offspring for quantitative traits according to the models in Amos (1994). The method uses data of all offspring by taking into account their trait mean and variance-covariance structures, which contain all the effects of major gene locus, polygenic loci and environment. A test statistic based on mixed models is shown to be more powerful than the test statistic proposed by George et al. (1999) under moderate disequilibrium for nuclear families. Moreover, it has higher power than the TDT statistic which is constructed by randomly choosing a single offspring from each nuclear family.