In a microarray experiment, messenger RNA samples are oftentimes pooled across subjects out of necessity, or in an effort to reduce the effect of biological variation. A basic problem in such experiments is to estimate the nominal expression levels of a large number of genes. Pooling samples will affect expression estimation, but the exact effects are not yet known as the approach has not been systematically studied in this context. We consider how mRNA pooling affects expression estimates by assessing the finite-sample performance of different estimators for designs with and without pooling. Conditions under which it is advantageous to pool mRNA are defined; and general properties of estimates from both pooled and non-pooled designs are derived under these conditions. A formula is given for the total number of subjects and arrays required in a pooled experiment to obtain gene expression estimates and confidence intervals comparable to those obtained from the no-pooling case. The formula demonstrates that by pooling a perhaps increased number of subjects, one can decrease the number of arrays required in an experiment without a loss of precision. The assumptions that facilitate derivation of this formula are considered using data from a quantitative real-time PCR experiment. The calculations are not specific to one particular method of quantifying gene expression as they assume only that a single, normalized, estimate of expression is obtained for each gene. As such, the results should be generally applicable to a number of technologies provided sufficient pre-processing and normalization methods are available and applied.