The B798 light-harvesting baseplate of the chlorosome antenna complex of the thermophilic, filamentous anoxygenic phototrophic bacterium Chloroflexus aurantiacus has been isolated and characterized. Isolation was performed by using a hexanol-detergent treatment of freeze-thawed chlorosomes. The isolated baseplate consists of Bchl a, beta-carotene, and the 5.7 kDa CsmA protein with a ratio of 1.0 CsmA protein/1.6 Bchl a/4.2 beta-carotenes. The baseplate has characteristic absorbance at 798 nm as well as carotenoid absorbance maxima at 519, 489, and 462 nm. The energy transfer efficiency from the carotenoids to the Bchl a is 30% as measured by steady-state and ultrafast time-resolved fluorescence and absorption spectroscopies. Energy equilibration within the Bchl a absorbing regions exhibits ultrafast kinetics. Circular dichroism spectroscopy shows no evidence for excitonically coupled Bchl a pools within the 798 nm region.