Irradiation of intense characteristic x-rays from weakly ionized linear molybdenum plasma

Igaku Butsuri. 2003;23(2):123-31.

Abstract

In the plasma flash x-ray generator, a high-voltage main condenser of approximately 200 nF is charged up to 55 kV by a power supply, and electric charges in the condenser are discharged to an x-ray tube after triggering the cathode electrode. The flash x-rays are then produced. The x-ray tube is a demountable triode that is connected to a turbo molecular pump with a pressure of approximately 1 mPa. As electron flows from the cathode electrode are roughly converged to a rod molybdenum target of 2.0 mm in diameter by the electric field in the x-ray tube, weakly ionized linear plasma, which consists of molybdenum ions and electrons, forms by target evaporation. At a charging voltage of 55 kV, the maximum tube voltage was almost equal to the charging voltage of the main condenser, and the peak current was about 20 kA. When the charging voltage was increased, the linear plasma formed, and the K-series characteristic x-ray intensities increased. The K lines were quite sharp and intense, and hardly any bremsstrahlung rays were detected. The x-ray pulse widths were approximately 700 ns, and the time-integrated x-ray intensity had a value of approximately 35 micro C/kg at 1.0 m from the x-ray source with a charging voltage of 50 kV.

MeSH terms

  • Electrodes
  • Electrons
  • Fluoroscopy*
  • Molybdenum*
  • Tomography, X-Ray Computed
  • X-Rays

Substances

  • Molybdenum