Morphine-6-beta-d-glucuronide (M6G) is an active metabolite of morphine with high analgesic potency despite a low blood-brain barrier (BBB) permeability. The aim of the study was to elucidate its transport mechanism across the BBB. We first checked if M6G was effluxed by the P-glycoprotein (P-gp), as previously reported by others. Second, we investigated the role of anionic transporters like the multidrug resistance-associated protein mrp1 and the glucose transporter GLUT-1. The brain uptake of [14C]M6G was measured by the in situ brain perfusion technique in wild-type and deficient mice [mdr1a(-/-) and mrp1(-/-)], with and without probenecid, digoxin, PSC833 or d-glucose. No difference was found between P-gp and mrp1 competent and deficient mice. The brain uptake of [14C]M6G co-perfused with probenecid in wild-type mice was not significantly different from that found in group perfused with [14C]M6G alone. The co-perfusion of [14C]M6G with digoxin or PSC833 was responsible of a threefold decrease of its uptake in mdr1a competent and deficient mice, suggesting that another transporter than P-gp and sensitive to digoxin and PSC833, may be involved. The co-perfusion of [14C]M6G with d-glucose revealed a threefold decrease in M6G uptake. In conclusion, P-gp and mrp1 are not involved in the transport of M6G at the BBB level in contrast to GLUT-1 and a digoxin-sensitive transporter (probably oatp2), which can actively transport M6G but with a weak capacity.