The GABAA receptor chloride channel complex interacts with various categories of sedatives, including the benzodiazepines, and possibly ethanol and volatile general anesthetics. Thus, specific binding of tritiated derivatives of a benzodiazepine antagonist, flumazenil, and an agonist, flunitrazepam, to rat brain membrane fragments was monitored at equilibrium in the presence and absence of anesthetizing concentrations of ethanol and diethylether. Ethanol produced a concentration-dependent inhibition of [3H]flumazenil binding, which was not reversed by the GABAA receptor competitive antagonist bicuculline, but had no effect on [3H]flunitrazepam binding. Both ethanol and diethylether decreased the affinity of the benzodiazepine site for [3H]flumazenil. These data indicate that ethanol and diethylether have GABA-independent effects at the benzodiazepine sites of the GABAA receptor. These findings are inconsistent with a two-state functional model of the benzodiazepine site and, instead, support a model containing a specific, antagonist-favored conformation.