The in vivo binding of 3H-Tiagabine to the central GABA uptake carrier in mouse brain was characterized. 3H-Tiagabine in vivo bound to a single class of binding sites with a Kd = 72.5 nM and a Bmax = 640 pmol/g tissue. 3H-Tiagabine binding in vivo was regionally distributed within the CNS, and showed a good correlation with 3H-Tiagabine binding in vitro. Pharmacological characterization of 3H-Tiagabine binding in vivo revealed a binding site exhibiting specificity for GABA uptake inhibitors. Experiments examining the in vivo receptor occupancy of the GABA uptake carrier for a series of GABA uptake inhibitors revealed that 20-30% of the GABA uptake sites were occupied at the ED50 for inhibiting DMCM-induced clonic convulsions, while a 50-62% receptor occupancy in vivo was needed to inhibit rotarod performance. These data suggest that 3H-Tiagabine in vivo binding may be a useful method for assessing GABA uptake inhibitor penetration into the CNS, and may be a useful tool for studying the physiological regulation of the GABA uptake carrier.