In order to obtain a large quantity of glutamic-acid-specific endopeptidase of Staphylococcus aureus ATCC12600 (SPase) without cultivating its pathogenic host bacterium, expression plasmids enabling secretion of SPase from Bacillus subtilis were constructed by inserting the SPase gene into B. subtilis-Escherichia coli shuttle vectors. B. subtilis harbouring a simple recombinant plasmid containing the coding and the 5'-flanking regions of SPase in the shuttle vector pHY300PLK secreted 22 mg/l of SPase into the medium. As this level was lower than that of the natural strain (45 mg/l), we tried to increase the expression level by constructing a series of hybrid plasmids with the following features: (1) the terminator sequence of the alkaline protease gene from B. subtilis, (2) the promoter and the leader sequences of the alpha-amylase gene or of alkaline protease gene from B. amyloliquefaciens, (3) the vector pHY300PLK and the fused vector of pHY300PLK and pUB110. By using a variety of hybrid plasmids, the resulting transformants secreted SPase at levels of 33-120 mg/l. The recombinant SPase isolated from the medium was indistinguishable from the natural one with respect to its behaviour on sodium dodecyl sulphate-polyacrylamide gel electrophoresis and Western blotting as well as its enzyme activity.