We investigated the effect of insulin-like growth factor II (IGF-II) and insulin-like growth factor binding protein-1 (IGFBP-1) on 3-O-methylglucose transport in incubated human skeletal muscle strips. Increasing physiological concentrations of IGF-II stimulated glucose transport in a dose-dependent manner. Glucose transport was maximally stimulated in the presence of 100 ng/ml (13.4 nM) of IGF-II, which corresponded to the effect obtained by 100 microU/ml (0.6 nM) of insulin. Exposure of muscle strips to IGFBP-1 (500 ng/ml) inhibited the maximal effect of IGF-II on glucose transport by 40%. Thus, it is conceivable that IGF-II and IGFBP-1 are physiological regulators of the glucose transport process in human skeletal muscle.