Equilibrium denaturation of recombinant porcine growth hormone (pGH) derived from Escherichia coli using the denaturant guanidine hydrochloride (GuHCl) was followed by ultraviolet absorption spectroscopy, intrinsic fluorescence, far-ultraviolet circular dichroism, and size-exclusion chromatography. The normalized denaturation transition curves for each of the above methods were not coincident; denaturation resulted in an initial disruption of the tertiary structure, whereas secondary structure and degree of compactness were disrupted at higher concentrations of denaturant. Size-exclusion chromatography also detected an associated form of pGH at intermediate GuHCl concentrations. These findings conclusively show that pGH does not follow a simple two-state folding mechanism but are consistent with the framework model of folding. Stable intermediates observed were similar to those seen in other nonhuman growth hormones and are characterized as compact and largely alpha-helical yet lacking nativelike tertiary structure.