The toxin N-methyl-1,2,3,6-tetrahydropyridine produces a model of neural degeneration very similar to idiopathic Parkinson disease. To understand the cellular mechanisms that modulate susceptibility to its active metabolite N-methyl-4-phenylpyridinium (MPP+), we have transfected a cDNA expression library from the relatively MPP(+)-resistant rat pheochromocytoma PC12 cells into MPP(+)-sensitive Chinese hamster ovary (CHO) fibroblasts. Selection of the stable transformants in high concentrations of MPP+ has yielded a clone extremely resistant to the toxin. Reserpine reverses the resistance to MPP+, suggesting that a transport activity protects against this form of toxicity, perhaps by sequestering the toxin within an intracellular compartment. In support of this hypothesis, dopamine loaded into the CHO transformant shows a localized distribution that is distinct from the pattern observed in wild-type cells and is also reversed by reserpine.