Functions of the coat protein of white clover mosaic potexvirus (WCIMV) were investigated using C-terminal deletion mutants. Whereas plants inoculated with RNA transcripts of a full-length wild-type clone of WCIMV produced typical infections, plants inoculated with transcripts of each mutant did not produce symptoms, and viral RNA species were not detected by Northern analysis. The mutants were able to replicate in protoplasts, although, relative to the wild-type RNA profile, the level of genomic RNA, but not subgenomic RNA, was reduced. These results indicate a role for the coat protein in efficient cell-to-cell transport in plants. Virus-like particles were detected in protoplast extracts inoculated with transcripts of a mutant in which the coat protein was truncated by 31 amino acids. This result suggests that the lack of detectable transport in plants was not due solely to a failure of the mutants to form virus particles. Possible roles for the coat protein in transport and replication are discussed. A 6-kDa open reading frame, internal to the coat protein gene, was shown by mutational analysis not to be essential for replication or transport.