The acute radiosensitivity in vivo of the murine hematopoietic stroma for 1 MeV fission neutrons or 300 kVp X rays was determined. Two different assays were used: (1) an in vitro clonogenic assay for fibroblast precursor cells (CFU-F) and (2) subcutaneous grafting of femora or spleens. The number of stem cells (CFU-S) or precursor cells (CFU-C), which repopulated the subcutaneous implants, was used to measure the ability of the stroma to support hemopoiesis. The CFU-F were the most radiosensitive, and the survival curves after neutron and X irradiation were characterized by D0 values of 0.75 and 2.45 Gy, respectively. For regeneration of CFU-S and CFU-C in subcutaneously implanted femora, D0 values of 0.92 and 0.84 Gy after neutron irradiation and 2.78 and 2.61 Gy after X irradiation were found. The regeneration of CFU-S and CFU-C in subcutaneously implanted spleens was highly radioresistant as evidenced by D0 values of 2.29 and 1.49 Gy for survival curves obtained after neutron irradiation, and D0 values of 6.34 and 4.85 Gy after X irradiation. The fission-neutron RBE for all the cell populations was close to 3 and varied from 2.77 to 3.28. The higher RBE values observed for stromal cells, compared to the RBE of 2.1 reported previously for hemopoietic stem cells, indicate that stromal cells are relatively more sensitive than hemopoietic cells to neutron irradiation.