Cyclooxygenase (COX)-2 and COX-1 potentiate beta-amyloid peptide generation through mechanisms that involve gamma-secretase activity

J Biol Chem. 2003 Dec 19;278(51):50970-7. doi: 10.1074/jbc.M307699200. Epub 2003 Sep 24.

Abstract

In previous studies we found that overexpression of the inducible form of cyclooxygenase, COX-2, in the brain exacerbated beta-amyloid (A beta) neuropathology in a transgenic mouse model of Alzheimer's disease. To explore the mechanism through which COX may influence A beta amyloidosis, we used an adenoviral gene transfer system to study the effects of human (h)COX-1 and hCOX-2 isoform expression on A beta peptide generation. We found that expression of hCOXs in human amyloid precursor protein (APP)-overexpressing (Chinese hamster ovary (CHO)-APPswe) cells or human neuroglioma (H4-APP751) cells resulting in 10-25 nM prostaglandin (PG)-E2 concentration in the conditioned medium coincided with an approximately 1.8-fold elevation of A beta-(1-40) and A beta-(1-42) peptide generation and an approximately 1.8-fold induction of the C-terminal fragment (CTF)-gamma cleavage product of the APP, an index of gamma-secretase activity. Treatment of APP-overexpressing cells with the non-selective COX inhibitor ibuprofen (1 microM, 48 h) or with the specific gamma-secretase inhibitor L-685,458 significantly attenuated hCOX-1- and hCOX-2-mediated induction of A beta peptide generation and CTF-gamma cleavage product formation. Based on this evidence, we next tested the hypothesis that COX expression might promote A beta peptide generation via a PG-E2-mediated mechanism. We found that exposure of CHO-APPswe or human embryonic kidney (HEK-APPswe) cells to PG-E2 (11-deoxy-PG-E2) at a concentration (10 nM) within the range of PG-E2 found in hCOX-expressing cells similarly promoted (approximately 1.8-fold) the generation of the CTF-gamma cleavage product of APP and commensurate A beta-(1-40) and A beta-(1-42) peptide elevation. The study suggests that expression of COXs may influence A beta peptide generation through mechanisms that involve PG-E2-mediated potentiation of gamma-secretase activity, further supporting a role for COX-2 and COX-1 in Alzheimer's disease neuropathology.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Alzheimer Disease / etiology
  • Amyloid Precursor Protein Secretases
  • Amyloid beta-Peptides / biosynthesis*
  • Animals
  • Aspartic Acid Endopeptidases
  • Cell Line
  • Cyclooxygenase 1
  • Cyclooxygenase 2
  • Cyclooxygenase 2 Inhibitors
  • Cyclooxygenase Inhibitors / pharmacology
  • Dinoprostone / pharmacology
  • Endopeptidases / drug effects
  • Endopeptidases / metabolism*
  • Humans
  • Ibuprofen / pharmacology
  • Isoenzymes / physiology*
  • Membrane Proteins
  • Peptide Fragments / biosynthesis*
  • Prostaglandin-Endoperoxide Synthases / physiology*
  • Transfection

Substances

  • Amyloid beta-Peptides
  • Cyclooxygenase 2 Inhibitors
  • Cyclooxygenase Inhibitors
  • Isoenzymes
  • Membrane Proteins
  • Peptide Fragments
  • Cyclooxygenase 1
  • Cyclooxygenase 2
  • PTGS1 protein, human
  • PTGS2 protein, human
  • Prostaglandin-Endoperoxide Synthases
  • Amyloid Precursor Protein Secretases
  • Endopeptidases
  • Aspartic Acid Endopeptidases
  • BACE1 protein, human
  • Bace1 protein, mouse
  • Dinoprostone
  • Ibuprofen