The antitumor efficiency of dendritic cells transduced with an adenovirus vector expressing interleukin (IL)-7 (DC-AdIL-7) was evaluated in a murine model of spontaneous bronchoalveolar cell carcinoma. These transgenic mice (CC-10 TAg), expressing the SV40 large T antigen under the Clara cell promoter, develop bilateral multifocal pulmonary adenocarcinomas and die at 4 months as a result of progressive pulmonary tumor burden. Injection of DC-AdIL-7 in the axillary lymph node region (ALNR) weekly for 3 weeks led to a marked reduction in tumor burden with extensive lymphocytic infiltration of the tumors and enhanced survival. The antitumor responses were accompanied by the enhanced elaboration of interferon (IFN)-gamma and IL-12 as well as an increase in the antiangiogenic chemokines, IFN-gamma-inducible protein 10 (IP-10/CXCL10) and monokine induced by IFN-gamma (MIG/CXCL9). In contrast, production of the immunosuppressive mediators IL-10, transforming growth factor (TGF)-beta, prostaglandin E(2) (PGE(2)), and the proangiogenic modulator vascular endothelial growth factor (VEGF) decreased in response to DC-AdIL-7 treatment. Significant reduction in tumor burden in a model in which tumors develop in an organ-specific manner provides a strong rationale for further evaluation of DC-AdIL-7 in regulation of tumor immunity and its use in lung cancer genetic immunotherapy.