We have computed the melting line of lithium hydride up to 200 GPa using the two-phase simulation technique coupled with first-principles molecular dynamics. Our predicted melting temperature at high pressures varies slowly with compression, ranging from 2000 to 2450 K at 50-200 GPa pressures. The compressed fluid close to the melting line retains the ionic character of the low pressure molten state, while at higher temperatures dynamical hydrogen clustering processes are observed, which are accompanied by changes in the electronic structure.