High-field magnetic resonance imaging scanners with a static magnetic field of 3 Tesla or higher are becoming ubiquitous in clinical and basic neurosciences. Given the high cost and complexity of operation, it is important to ask whether or not and how the use of high-field magnets can be beneficial for the neurosciences. What new questions can be addressed? Which new insights can we expect from these new tools? In addition, what are the limitations of these new techniques? This review discusses the three most important applications of the high-field magnetic resonance techniques for the neuroscience community: first, functional magnetic resonance imaging, second, in vivo spectroscopy, and third, in vivo fiber tracking on the basis of diffusion tensor imaging.