Cyclooxygenase-independent induction of p21WAF-1/cip1, apoptosis and differentiation by L-745,337, a selective PGH synthase-2 inhibitor, and salicylate in HT-29 cells

Apoptosis. 1999 Jun;4(3):151-62. doi: 10.1023/a:1009631204581.

Abstract

In order to dissect out cyclooxygenase-dependent from cyclooxygenase-independent mechanisms in the antiproliferative effects of selective prostaglandin H synthase (PGHS)-2 inhibitors, we compared the effects of L-745,337 (a highly selective PGHS-2 inhibitor) with sodium salicylate (a weak PGHS inhibitor) on prostanoid production, induction of the cyclin-dependent kinase inhibitor p21WAF-1/cip1, mutant p53 (m273-p53) levels, apoptosis and differentiation in human colon adenocarcinoma HT-29 cells. L-745,337 dose-dependently suppressed the cyclooxygenase activity of HT-29 cells (IC50: 0.24 microM). Four-day treatment with L-745,337 caused a concentration-dependent inhibition of cell growth (IC50: 0.9 mM) associated with the induction of p21WAF-1/cip1 and an increase in the proportion of apoptotic nuclei (EC50: 0.1 and 0.34 mM, respectively) while reducing the levels of m273-p53 (IC50: 0.2 mM). Sodium salicylate, at the concentration of 10 mM that did not affect prostanoid formation, caused a 60% reduction of cell growth associated with a 3-fold induction of p21WAF-1/cip1 and a 60% increase in the proportion of apoptotic nuclei. Ultrastructural analysis showed that L-745,337 (0.5 mM) and sodium salicylate (10 mM) caused the induction of a differentiated phenotype. We conclude that high concentrations of L-745,337 and sodium salicylate inhibit colon cancer cell growth by a mechanism unrelated to cyclooxygenase inhibition that may involve p53-independent induction of the tumor suppressor p21WAF-1/cip1.