We have shown that over-sulfated chondroitin sulfate/dermatan sulfate (CS/DS) chains from various marine organisms exhibit growth factor binding activities and neurite outgrowth-promoting activities in embryonic mouse hippocampal neurons in vitro. In this study we demonstrated that CS/DS hybrid chains purified from embryonic pig brain displayed marked neuritogenic activity and growth factor binding activities toward fibroblast growth factor 2 (FGF2), FGF10, FGF18, pleiotrophin, and midkine, all of which exhibit neuroregulatory activities in the brain. In contrast, the CS/DS preparation from adult pig brain showed considerably less activity to bind these growth factors and no neuritogenic activity. Structural analysis indicated that the average size of the CS/DS chains was similar (40 kDa) between these two preparations, but the disaccharide compositions differed considerably, with a significant proportion of l-iduronic acid (IdoUA)-containing disaccharides (8 approximately 9%) in the CS/DS chains from embryos but not in those from adults (<1%). Interestingly, both neurite outgrowth-promoting activity and growth factor binding activities of the CS/DS chains from embryos were abolished by digestion not only with chondroitinase ABC but also with chondroitinase B, suggesting that the IdoUA-containing motifs are essential for these activities. These findings imply that the temporal expression of CS/DS hybrid structures containing both GlcUA and IdoUA and binding activities toward various growth factors play important roles in neurogenesis in the early stages of the development of the brain.