Altered control of gastric acid secretion in gastrin-cholecystokinin double mutant mice

Gastroenterology. 2004 Feb;126(2):476-87. doi: 10.1053/j.gastro.2003.11.012.

Abstract

Background & aims: Three pathways control gastric acid secretion: the gastrin-enterochromaffin-like (ECL) cell axis, the vagus-parietal cell axis, and the cholecystokinin (CCK)-D cell axis. Mice lacking gastrin or both gastrin and CCK were examined to determine the role of the hormones.

Methods: Acid was measured after pylorus ligation, and biopsies from gastrin knockout (KO), gastrin-CCK double-KO, and wild-type (WT) mice were collected for biochemical, immunocytochemical, and electron-microscopic examination.

Results: The ECL cells were inactive in both groups of mutant mice but the cell number was unaffected. Both parietal cell number and level of H(+)/K(+)-ATPase messenger RNA (mRNA) were reduced in the mutant strains, but gastrin-CCK double-KO mice displayed more active parietal cells and larger acid output than the gastrin KO mice. The acid response to histamine in double-KO mice was unchanged whereas that to gastrin was diminished, but it could be restored by infusion of gastrin. Oxyntic D-cell density was the same in both mutant strains, but the D cells were more active in the gastrin KO than in the double-KO mice. CCK infusion in gastrin-CCK double-KO mice raised the somatostatin mRNA level and inhibited acid secretion to the level seen in gastrin KO mice. Vagotomy and atropine abolished acid secretion in all 3 groups of mice.

Conclusions: Lack of gastrin impairs the gastrin-ECL axis, whereas lack of gastrin and CCK impairs both hormonal pathways. In the gastrin-CCK double-KO mice, acid secretion is only controlled by cholinergic vagal stimulation, which normalizes the acid output.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cholecystokinin / deficiency*
  • Enterochromaffin Cells / metabolism
  • Gastric Acid / metabolism*
  • Gastrins / deficiency*
  • Mice
  • Mice, Knockout
  • Parietal Cells, Gastric / metabolism
  • Somatostatin-Secreting Cells / metabolism
  • Vagotomy

Substances

  • Gastrins
  • Cholecystokinin