Certain applicants with stable disturbances of rhythm or conduction requiring cardiac pacing, in whom no other disqualifying condition is present, may be considered fit for medical certification restricted to multi-crew operations. The reliability of modern pacing systems appears adequate to permit restricted certification even in pacemaker dependent subjects except for certain models of pacemakers and leads known to be at increased risk of failure. These are to be avoided. There is little evidence to suggest that newer devices are any more reliable than their predecessors. Single and dual chamber systems appear to have similar reliability up to 4 years, after which time significant attrition of dual chamber devices occurs, principally due to battery depletion. All devices require increased scrutiny as they approach their end of life as predicted from longevity data and pacing characteristics. Unipolar and bipolar leads are of similar reliability, apart from a number of specific bipolar polyurethane leads which have been identified. Atrial leads, particularly those without active fixation, are less secure than ventricular leads and applicants who are dependent on atrial sensing or pacing should be denied certification. Bipolar leads are to be preferred due to the lower risk of myopotential and exogenous EMI. Sensor-driven adaptive-rate pacing systems using active sensors may have reduced longevity and require close scrutiny. Activity-sensing devices using piezoelectric crystal sensors may be subject to significant rate rises in rotary wing aircraft. The impracticality of restricted certification in helicopters will, in any event, preclude certification. Such devices would best be avoided in hovercraft (air cushioned vehicle) pilots. Only minor rate rises are likely in fixed-wing aircraft which are unlikely to be of significance. Anti-tachycardia devices and implanted defibrillators are inconsistent with any form of certification to fly.