Background: In elderly depression, volumetric brain imaging findings suggest abnormalities of the frontal lobe, particularly the orbitofrontal cortex, and the hippocampus. No studies to date have mapped cortical abnormalities over the entire brain surface in major depression. Here, we conducted detailed spatial analyses of brain size and gray matter within the cortical mantle in elderly patients with major depression.
Methods: High-resolution, three-dimensional, structural magnetic resonance imaging data and cortical pattern matching methods were used in 24 depressed elderly patients and 19 group-matched controls to measure local brain size and proportions of gray matter at thousands of homologous cortical surface locations.
Results: Prominent brain size reductions were observed in the depressed subjects in the orbitofrontal cortex bilaterally. Cortical gray matter measurements revealed significant gray matter increases in the orbitofrontal cortex, adjacent to focal trend level significant decreases of gray matter in the same region. Depressed patients also exhibited significant gray matter increases in parietal cortices, as well as the left temporal cortex.
Conclusions: Complex cortical changes may contribute to the brain size reduction of the orbitofrontal cortex and to the gray matter abnormalities detected in orbitofrontal cortex and temporoparietal cortices, thereby providing a potentially new window into the pathophysiology of elderly depression.