B cell chronic lymphocytic leukemia (CLL) is characterized by an accumulation of mature, functionally incompetent B cells. Wnts are a large family of secreted glycoproteins involved in cell proliferation, differentiation, and oncogenesis. The classical Wnt signaling cascade inhibits the activity of the enzyme glycogen synthase kinase-3beta, augmenting beta-catenin translocation to the nucleus, and the transcription of target genes. Little is known about the potential roles of Wnt signaling in CLL. In this study, we quantified the gene expression profiles of the Wnt family, and their cognate frizzled (Fzd) receptors in primary CLL cells, and determined the role of Wnt signaling in promoting CLL cell survival. Wnt3, Wnt5b, Wnt6, Wnt10a, Wnt14, and Wnt16, as well as the Wnt receptor Fzd3, were highly expressed in CLL, compared with normal B cells. Three lines of evidence suggested that the Wnt signaling pathway was active in CLL. First, the Wnt/beta-catenin-regulated transcription factor lymphoid-enhancing factor-1, and its downstream target cyclin D1, were overexpressed in CLL. Second, a pharmacological inhibitor of glycogen synthase kinase-3 beta, SB-216763, activated beta-catenin-mediated transcription, and enhanced the survival of CLL lymphocytes. Third, Wnt/beta-catenin signaling was diminished by an analog of a nonsteroidal antiinflammatory drug (R-etodolac), at concentrations that increased apoptosis of CLL cells. Taken together, these results indicate that Wnt signaling genes are overexpressed and are active in CLL. Uncontrolled Wnt signaling may contribute to the defect in apoptosis that characterizes this malignancy.