Immunomagnetic bead separation coupled with bead beating and real-time PCR was found to be a very effective procedure for the isolation, separation, and detection of Mycobacterium avium subsp. paratuberculosis from milk and/or fecal samples from cattle and American bison. Samples were spiked with M. avium subsp. paratuberculosis organisms, which bound to immunomagnetic beads and were subsequently lysed by bead beating; then protein and cellular contaminants were removed by phenol-chloroform-isopropanol extraction prior to DNA precipitation. DNA purified by this sequence of procedures was then analyzed by conventional and real-time IS900-based PCR in order to detect M. avium subsp. paratuberculosis in feces and milk. By use of this simple and rapid technique, 10 or fewer M. avium subsp. paratuberculosis organisms were consistently detected in milk (2-ml) and fecal (200-mg) samples, making this sensitive procedure very useful and cost-effective for the diagnosis of clinical and subclinical Johne's disease (paratuberculosis) compared to bacteriological culture, which is constrained by time, labor, and expense under diagnostic laboratory conditions.