Beta cell replacement is a valid alternative to exogenous insulin injections to treat type 1 diabetic patients. The rate of success obtained after whole-pancreas transplantation, performed alone or in combination with kidney, and, as shown recently, by islet transplantation, justifies optimism and sets the stage for a larger clinical application of these approaches. Lifetime immunosuppression, however, required to protect the graft against recurrent autoimmune destruction and allorejection, raises serious doubts about the safety of its employment in children. While it is evident that children may be helped even more than adults by the possibility to correct diabetic metabolic disorders without exogenous insulin, and to lower in a more effective way the chance to develop secondary complications, the drawbacks of the currently used immunosuppressive drugs largely overcome the potential benefits. A great step forward for immediate applicability of transplantation to children involves the optimization of tolerogenic protocols and a better understanding of the concept of immune ignorance. Functional tolerance should be sufficient to entail the absence of immune reactivity against self- and graft antigens, while maintaining immune reactivity against other non-self, non-donor antigens. In addition, novel strategies aimed at utilizing surrogate beta cells obtained from non-islet cells, or by genetic manipulation of beta-cell precursors merit consideration as the use of xenogeneic donors. However, much work is still needed for their safe clinical implementation.