Possible involvement of histidine residues and sulfhydryl groups in the function of the intestinal brush-border membrane (BBM) transporter of biotin was investigated. This was done by examining the effects of pretreatment of BBM vesicle (BBMV) isolated from rabbit intestine with the histidine-specific reagent diethyl pyrocarbonate (DEPC) and the sulfhydryl group-specific reagents p-chloromercuribenzenesulfonic acid (p-CMBS) and 7-chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD-Cl) on carrier-mediated biotin transport. Pretreatment of BBMV with DEPC caused significant inhibition in the initial rate of biotin transport without affecting the substrate uptake at equilibrium. Addition of biotin plus Na+ to vesicle suspensions prior to treatment with DEPC provided significant protection to biotin transport. Treatment of DEPC-pretreated vesicles with the reducing agents dithiothreitol and 2,3-dimercaptopropanol failed to reverse the inhibitory effect of DEPC on biotin transport. The inhibitory effect of DEPC was found to be mediated through a marked decrease in the number of the functional biotin transport carriers with no change in their affinity, as indicated by the severe inhibition in the Vmax but not the apparent Km of the biotin transport process, respectively. Pretreatment of BBMV with p-CMBS and NBD-Cl also caused significant inhibition in the initial rate of biotin transport without affecting the substrate uptake at equilibrium. Addition of biotin plus Na+ to vesicle suspensions prior to treatment with p-CMBS (or NBD-Cl) failed to protect biotin transport from inhibition. On the other hand, treatment of vesicles pretreated with p-CMBS (or NBD-Cl) with the reducing agents dithiothreitol and mercaptoethanol caused significant reversal in the inhibition of biotin transport. The inhibitory effects of p-CMBS (and NBD-Cl) on biotin transport was also found to be mediated through inhibition in the Vmax, but not the apparent Km, of biotin transport process. These results indicate the involvement of histidine residues and sulfhydryl groups in the normal function of the biotin transport system of rabbit intestinal BBM. Furthermore, the results also suggest that the histidine residues are probably located at (or near) the substrate-binding site while the sulfhydryl groups are located at a site other than the substrate binding region.