Laboratory diagnosis of viral respiratory infections is generally performed by virus isolation in cell culture and immunofluorescent assays. Reverse transcriptase PCR is now recognized as a sensitive and specific alternative for detection of respiratory RNA viruses. A rapid real-time multiplex PCR assay was developed for the detection of influenza A and influenza B viruses, human respiratory syncytial virus (RSV), parainfluenza virus 1 (PIV1), PIV2, PIV3, and PIV4 in a two-tube multiplex reaction which used molecular beacons to discriminate the pathogens. A total of 358 respiratory samples taken over a 1-year period were analyzed by the multiplex assay. The incidence of respiratory viruses detected in these samples was 67 of 358 (19%) and 87 of 358 (24%) by culture and real-time PCR, respectively. Culture detected 3 influenza A virus, 2 influenza B virus, 57 RSV, 2 PIV1, and 2 PIV3 infections. All of these culture-positive samples and an additional 5 influenza A virus, 6 RSV, 2 PIV1, 1 PIV2, 1 PIV3, and 3 PIV4 infections were detected by the multiplex real-time PCR. The application of real-time PCR to clinical samples increases the sensitivity for respiratory viral diagnosis. In addition, results can be obtained within 6 h, which increases clinical relevance. Therefore, use of this real-time PCR assay would improve patient management and infection control.