14-3-3sigma belongs to the 14-3-3 family of proteins, which are involved in the modulation of diverse signal transduction pathways. Loss of 14-3-3sigma expression has been observed in a number of human cancers, suggesting that it may have a role as a tumor suppressor gene. The aim of the study was to investigate the expression and the functional role of 14-3-3sigma in pancreatic ductal adenocarcinoma (PDAC). Expression of 14-3-3sigma was analyzed using laser capture microdissection (LCM), quantitative real-time-PCR (QRT-PCR), DNA arrays, immunohistochemistry and western blot analysis. The role of 14-3-3sigma in apoptosis and cell cycle regulation was evaluated by western blotting, immunoprecipitation and FACS analysis. By QRT-PCR, 14-3-3sigma mRNA levels were 54-fold increased in pancreatic adenocarcinoma in comparison with normal pancreatic samples and localized in pancreatic cancer cells as determined by LCM. In pancreatic cancer cells, the degree of 14-3-3sigma expression was not decisive for the maintenance of G(2)/M cell cycle checkpoint or induction of apoptosis. Responses to radiation or apoptosis-inducing agents were neither accompanied by a significant 14-3-3sigma accumulation nor by a change in association of 14-3-3sigma with cdc2, bad and bax. In conclusion, the marked over-expression of 14-3-3sigma in PADC together with multiple known genetic and epigenetic alterations of potential 14-3-3sigma interacting partners suggests an important role of aberrant 14-3-3sigma downstream signaling in pancreatic cancer.