Gas-phase reactions of nitromethane (1), nitroethane (2), 2-nitropropane (3), 2-methyl-2-nitropropane (4) and nitrocyclopropane (5) were studied at 300 K using the flowing afterglow technique. These nitroalkanes react with gas-phase bases HO(-), CH(3)O(-) and HOO(-) very rapidly with rate coefficients of (2.5-4.3) x 10(-9) cm(3) s(-1) and reaction efficiencies of 60-100%, for example, k = 3.2 x 10(-9) cm(3) s(-1) (86%) for 5 reacting with hydroperoxide anion. Proton transfer (PT) is the only reaction observed for 1 while elimination (E2) is the exclusive pathway for 4 yielding isobutene and NO(2)(-). Both PT and E2 reactions are observed for 2, 3 and 5, the former being the major pathway. Deprotonated anions of 1, 2, 3 and 5 were subjected to reactivity studies with CH(3)I, CO(2), CS(2) and SO(2). Nucleophilic substitution (S(N)2) reaction occurs with CH(3)I while characteristic products CS(2)O(-) and SO(3)(-) are formed from CS(2) and SO(2), respectively, along with competing adduct formation. The SN(2) rate is greater, whereas the reactivities with the triatomic reagents are smaller for deprotonated nitrocyclopropane than for the other acyclic anions. These observations strongly suggest that the reactions of nitroalkane [M - H](-) anions occur through initial attack from the terminal oxygen; the nitrocyclopropane carbanion is more strained and, thus, less stabilized by resonance [R(2)C(-) - NO2 <--> R(2)=NO(2)(-)] resulting in the greater basicity/nucleophilicy and the less negative charge on the oxygen site.