The AML1 gene (also known as RUNX1) at 21q22 codes for core binding factor (CBF) alpha, which forms a heterodimer with CBF beta that acts as a transcriptional activating factor. CBF is a critical regulator in the generation and differentiation of definitive hematopoietic stem cells and is frequently disrupted in leukemia through chromosome translocations. We cloned a novel AML1 partner gene, PRDX4, in an X;21 translocation in a 74-year-old male patient diagnosed with acute myeloid leukemia-M2. Chromosome analysis detected a t(X;21)(p22;q22) as the sole abnormality in bone marrow samples. The involvement of AML1 was confirmed by fluorescence in situ hybridization studies. Using 3' RACE-PCR, we cloned a fusion between exon 5 of AML1 and exon 2 of PRDX4. RT-PCR confirmed the fusion and detected another fusion between exon 6 of AML1 and exon 2 of PRDX4, indicating alternative splicing of exon 6 of AML1 in the fusion transcripts. PRDX4 is one of six peroxiredoxin-family genes that are highly conserved in eukaryotes and prokaryotes and are ubiquitously expressed. Peroxiredoxin genes exhibit thioredoxin-dependent peroxidase activity and have been implicated in a number of other cellular functions such as cell proliferation and differentiation. PRDX4 plays a regulatory role in the activation of the transcription factor NF-kappaB and is significantly down-regulated in acute promyelocytic leukemia. This is the first example of antioxidant enzyme involvement in a chromosome translocation in leukemia.
Copyright 2004 Wiley-Liss, Inc.