The peptide fusion inhibitor (PFI) enfuvirtide is the first of a new class of entry inhibitors to receive FDA approval. We previously determined the susceptibility of 55 PFI-naïve-patient isolates to enfuvirtide and a second peptide inhibitor, T-649. Seven of the 55 viral isolates were insusceptible to enfuvirtide, T-649, or both inhibitors in the absence of prior exposure. To determine the molecular basis of the insusceptible phenotypes, we PCR amplified and cloned five PFI-insusceptible and one PFI-susceptible, full-length, biologically functional env genes and characterized viruses pseudotyped with the Env proteins in a single-round drug sensitivity assay. Overall, the mean 50% inhibitory concentrations of enfuvirtide and T-649 for the PFI-insusceptible Env pseudotypes were 1.4 to 1.7 log(10) and 1.2 to 1.8 log(10) greater, respectively, than those for a PFI-susceptible lab strain, NLHX; however, all of the PFI-insusceptible Env proteins conserved the sequence of a critical enfuvirtide interaction site (residues 36 to 38 of gp41, GIV) in HR-1. In contrast, multiple amino acid changes were observed C-terminal to HR-1, many of which were located in regions of HR-2 corresponding to the PFI. Nevertheless, peptides based on patient-derived HR-2 sequences were not more potent inhibitors than enfuvirtide or T-649, arguing that the basis of PFI susceptibility is not a higher-affinity, competitive HR-1/HR-2 interaction. These results demonstrate that regions of Env outside the enfuvirtide interaction site can significantly impact the PFI susceptibility of patient-derived Env, even prior to drug exposure. We hypothesize that both gp120 gene- and gp41 gene-encoded determinants that minimize the window of opportunity for PFI to bind provide a growth advantage and possibly a predisposition to resistance to this new class of drugs in vivo.